French, asked by DwitiyaRoy, 11 months ago

find the HCF and LCM using the property that is product of HCF and LCM is equal to the product of the numbers



a) 117and221

Answers

Answered by AdorableMe
26

117=13*3^2\\221=13*17\\\\\text{HCF=product of common factors with their lowest powers.}\\\text{LCM=product of all the factors with their highest powers.}

\bold{HCF=13}\\\\\bold{LCM=13*17*3^2=1989}

  • HCF*LCM=13*1989

                               \displaystyle{ = 25857}

  • \text{Now, product of both the numbers = 117*221}\\

                                                               =25857

Answered by Anonymous
0

\large\underline\bold{ANSWER \red{\huge{\checkmark}}}

117=13*3^2\\221=13*17\\\\\text{HCF=product of common factors with their lowest powers.}\\\text{LCM=product of all the factors with their highest powers.}

\bold{HCF=13}\\\\\bold{LCM=13*17*3^2=1989}

HCF*LCM=13*1989

                               \displaystyle{ = 25857}

\text{Now, product of both the numbers = 117*221}\\

                                                               =25857

Similar questions