find the hcf and lemon of 30,72 and 423 by prime factorisation method
Answers
Answered by
2
p(x)=(x+1)(x
2
+ax+4) ........ (i)
and q(x)=(x+4)(x
2
+bx+2) ........ (ii)
h(x)=x
2
+5x+4 is HCF of p(x) and q(x)
h(x)=x
2
+5x+4
=x
2
+4x+x+4
=x(x+4)+(x+4)
=(x+4)(x+1)
∴x=4,−1 are the roots of p(x),q(x) and h(x)
∴p(x)=(x+1)(x
2
+ax+4)=(x+1)(x+4)f(x), for some f(x)
⟹(x
2
+ax+4)=(x+4)f(x)
Take x=−4
⟹((−4)
2
+a(−4)+4)=0
⟹16−4a+4=0
⟹a=5
Similarly, q(x)=(x+1)(x+4)g(x), for some factor g(x) of q(x)
⟹(x
2
+bx+2)=(x+1)g(x)
Take x=−1
⟹(−1)
2
+b(−1)+2=0
⟹1−b+2=0
⟹b=3
Hence, a=5 and b=3
Similar questions
English,
5 months ago
Social Sciences,
5 months ago
Math,
5 months ago
Social Sciences,
10 months ago
English,
10 months ago
English,
1 year ago