find the HCF by long division method of 26. 15 and 25
Answers
Step-by-step explanation:
Step I:
Divide the large number by the smaller one.
Step II:
Then the remainder is treated as divisor and the divisor as dividend.
Step III:
Divide the first divisor by the first remainder.
Step IV:
Divide the second divisor by the second remainder.
Step V:
Continue this process till the remainder becomes 0.
Step VI:
The divisor which does not leave a remainder is the H.C.F. or G.C.D. of the two numbers and thus, the last divisor is the required highest common factor (H.C.F) of the given numbers.
Let us consider some of the examples to find highest common factor (H.C.F) by using division method.
1. Find highest common factor (H.C.F) of 18 and 30 by using division method.
Solution:
To find Highest Common Factor by using Division Method
3Save
Step I:
Here we need to divide 30 by 18.
[Divide the larger number by the smaller one].
Step II:
The first divisor is 18 and the remainder is 12, so we need to divide 18 by 12.
[Divide the first divisor by the first remainder].
Step III:
Now divide the second divisor 12 by the second remainder 6.
[Divide the second divisor by the second remainder].
Step IV:
The remainder becomes 0.
Step V:
Therefore, highest common factor = 6.
[The last divisor is the required highest common factor (H.C.F) of the given numbers].