Math, asked by saharshpardeshi10, 1 month ago

Find the HCF of 126, 162 and 180 using prime factorization method for HCF. Step by Step method and also solve and share the photo of it plss

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider

 \red{\rm :\longmapsto\:Prime \: factorization \: of \: 126}

 \red{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:126 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:63 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:21\:\:}} \\ {\underline{\sf{7}}}& \underline{\sf{\:\:7 \:\:}} \\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}

Thus,

 \red{\rm :\longmapsto\:Prime \: factorization \: of \: 126 = 2 \times  {3}^{2} \times 7 }

Consider

 \green{\rm :\longmapsto\:Prime \: factorization \: of \: 162}

 \green{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:162 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:81 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:27\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}

Thus,

 \green{\rm :\longmapsto\:Prime \: factorization \: of \: 162 = 2 \times  {3}^{4} }

Consider

 \blue{\rm :\longmapsto\:Prime \: factorization \: of \: 180}

 \blue{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:180 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:90 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:30\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:15 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}

Thus,

 \blue{\rm :\longmapsto\:Prime \: factorization \: of \: 180 =  {2}^{2} \times  {3}^{2}  \times 5}

So, we have

 \red{\rm :\longmapsto\:Prime \: factorization \: of \: 126 = 2 \times  {3}^{2} \times 7 }

 \green{\rm :\longmapsto\:Prime \: factorization \: of \: 162 = 2 \times  {3}^{4} }

 \blue{\rm :\longmapsto\:Prime \: factorization \: of \: 180 =  {2}^{2} \times  {3}^{2}  \times 5}

Hence,

\purple{\rm :\longmapsto\: \boxed{ \bf{ \:HCF( 126, 162, 180 ) =  {3}^{2} \times 2 = 18}}}

Similar questions