Math, asked by abdulahadshahid700, 1 month ago

Find the HCF of 28, 42 and 98 using prime factorisation.​

Answers

Answered by ABHI1441148NDA
2

Answer:

this is answer for your question

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

 \red{ \bf \: Prime \:  Factorization  \: of  \: 28}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:28\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:14}} \\\underline{\sf{7}}&\underline{\sf{\:\:7}}\\\underline{\sf{}}&{\sf{\:\:1}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\rm :\longmapsto\:28 = 2 \times 2 \times 7

 \red{ \bf \: Prime \:  Factorization  \: of  \: 42}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:42\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:21 \: }} \\\underline{\sf{7}}&\underline{\sf{\:\:7 \: }}\\\underline{\sf{}}&{\sf{\:\:1}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\rm :\longmapsto\:42 = 2 \times 3 \times 7

 \red{ \bf \: Prime \:  Factorization  \: of  \: 98}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:98\:}}}\\ {\underline{\sf{7}}}& \underline{\sf{\:\:49 \: }} \\\underline{\sf{7}}&\underline{\sf{\:\:7 \: }}\\\underline{\sf{}}&{\sf{\:\:1}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\rm :\longmapsto\:98 = 2 \times 7 \times 7

So,

\bf\implies \:HCF(28, 42, 98) = 2 \times 7 = 14

Additional Information :-

1. HCF is a factor of LCM, i.e. HCF always divides LCM.

2. Let a and b are two numbers, then

  • HCF(a, b) × LCM(a, b) = a × b

3. HCF of numbers is always asmaller than or equal to smaller of given numbers.

4. LCM of numbers is always greater than or equal to larger of given number.

Similar questions