Math, asked by 11576, 4 months ago

Find the HCF of 42, 70 and 140.

Answers

Answered by dk1572005
3

42= 2×3×7

70= 2×5×7

140= 2×2×5×7

Attachments:
Answered by CɛƖɛxtríα
177

Question:-

  • Find the HCF of 42, 70 and 140.

Concept:-

The greatest number, which is the common factor of two or more given numbers is called "highest common factor" (HCF) or the greatest common divisor (GCD).

Generally HCF can be carried out in two methods:

  • HCF by listing factors.
  • HCF by using prime factorisation.

Solution:-

Let's find the HCF using both the above listed methods!

By listing factors-

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎In this method, we have to write all the factors of the given numbers. Then, we should separately pick out the common factors from the list. And at last, we have to find the greatest factor among the common factors, which is the HCF of the given numbers.

\rightarrow\bf{Factors \: of \: 42  - \sf{ \boxed{  \sf\pink{1}} \:   \: \:  \boxed{  \sf\purple{2}}   \: \: \: 3 \:  \:  \: 6   \: \: \:  \boxed{ \sf \orange{7 }}\:   \: \:  \boxed{ \sf \blue{14}} \:  \:  \: 21 \:  \:  \: 42}}  \\   \rightarrow\bf{Factors \: of \:70 -  \sf{ \boxed{  \sf\pink{1}} \:  \:  \:  \boxed{  \sf\purple{2}} \:  \:  \: 5 \:  \:  \:  \boxed{ \sf \orange7} \:  \:  \: 10 \:  \:  \:  \boxed{ \sf \blue{14}} \:  \:  \: 35 \:  \:  \: 70} } \\   \rightarrow\bf{Factors \: of \: 140 -  \sf{ \boxed{  \sf\pink{1}} \:  \:  \:  \boxed{  \sf\purple{2}} \:  \:  \: 4 \:  \:  \: 5 \:  \:  \:  \boxed{  \sf\orange{7}} \:  \:  \: 10 \:  \:  \:  \boxed{  \sf \blue{14 }}\:  \:  \: 20 \:  \:  \: 28 \:  \:  \: 35 \:  \:  \: 70 \:  \:  \: 140}}

  • Common Factors 1 ‎‎< ‎2 ‎‎< ‎‎7 ‎<‎‎ ‎14

  • Highest Common Factor 14

__________________________________________

By using prime factorisation-

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎In this method, first we will be listing the factors using prime factorisation separately. And then, we will be listing out the factors. Next, we will be picking out the common factors and then multiplying them with each other.

\begin{gathered}\:\:\:\:\:\:\:\:\:\:\:\begin{gathered} \begin{array}{c|c} \underline{\sf{7}}&amp; {\sf{ \underline{ \red{42} \:  \:  \: } \:  \:  \:   \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }} \\ \underline{\sf{3}}&amp;{\sf{ \underline{6 \:  \:  \:  \:  \:   }\:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  }} \\\underline{\sf{2}}&amp;{\sf{ \underline{2 \:  \:  \:  \:  \:  } \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \: }} \\  \sf{} &amp; \sf{1 \:  \:  \:  \:  \: } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \end{array}\end{gathered}\end{gathered}

\begin{gathered}\:\:\:\:\:\:\:\:\:\:\:\begin{gathered} \begin{array}{c|c} \underline{\sf{7}}&amp; {\sf{ \underline{ \red{70} \:  \:  \: } \:  \:  \:   \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }} \\ \underline{\sf{5}}&amp;{\sf{ \underline{10 \:  \:  \:   }\:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  }} \\\underline{\sf{2}}&amp;{\sf{ \underline{2 \:  \:  \:  \:  \:  } \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \: }} \\  \sf{} &amp; \sf{1 \:  \:  \:  \:  \: } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \end{array}\end{gathered}\end{gathered}

\begin{gathered}\:\:\:\:\:\:\:\:\:\:\:\begin{gathered} \begin{array}{c|c} \underline{\sf{7}}&amp; {\sf{ \underline{ \red{140}    \: } \:  \:  \:   \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }} \\ \underline{\sf{5}}&amp;{\sf{ \underline{20 \:  \:  \:   }\:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  }} \\\underline{\sf{2}}&amp;{\sf{ \underline{4 \:  \:  \:  \:  \:  } \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \: }} \\  \sf \underline{2} &amp; \sf \underline{2 \:  \:  \:  \:  \: } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf{}&amp;  \sf{1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }\end{array}\end{gathered}\end{gathered}

  • 42 ‎ ‎ 7 ‎ ,‎ ‎3 ‎ ,‎ ‎2
  • 70 ‎ ‎ 7 ‎ ‎, ‎5 ‎ ‎, ‎2
  • 140 ‎ ‎ 7 ‎ ‎, ‎5 ‎ ,‎ ‎2 ‎ ,‎ ‎2

Common Factors:- 7 and 2

Their Product:- 7 × 2 = 14 \rightarrow HCF

\\ \therefore \underline{ \sf { \pmb{The \: HCF \: of \: 42, \: 70 \: and \: 140 \: is \:  \red{14}}.}}

Similar questions