Find the hcf of 657 and 963 express it in the form of 657m 963n and hence find the value of m and n
Answers
Answered by
18
Answer: m = 22 and n = -15
Step-by-step explanation:
According to Euclid's division lemma
a=bq+r, 0<=r<b
963=657*1+306
657=306*2+45
306=45*6+36
45=36*1+9
36=9*4+0
therefore hcf of the two number is 9
9=[45-(36*1)]
9=[45-{306-(45*6)}*1]
9=[45-(306*1)+(45*6)]
9=[{657-(306*2)}*(6+1)-306*1]
9=[657*7-306*14-306*1]
9=[657*7-306*15]
9=[657*7-{963-(657*1)}*15]
9=[657*7-963*15+657*15]
9=[657*22-963*15]
9=657m+963n
m= 22, n = (-15)
sajithavinod1425:
Good
Similar questions