Math, asked by lohithagowda78051, 1 year ago

Find the HCF of 75 ,100 and 140 numbers by long division method

Answers

Answered by gayatrikumari99sl
4

Answer:

5 is the required HCF of 75, 100, and 140.

Step-by-step explanation:

Explanation:

Given that, 75, 100, and 140.

  • HCF - The greatest number that divides each of the two or more numbers is known as the HCF, or the highest common factor.
  • The Greatest Common Measure (GCM) and Greatest Common Divisor are further names for HCF (GCD)
  • Example - let two numbers 24 and 36. Common factor of 24 and 36 are 2 , 2, 3 .So, the hcf of 24 and 36 is 12 (2× 2 ×3).

Step 1:

We have, 75, 100 and 140

By long division method,

On dividing 100 by 75

           75) 100( 1

                  7 5

                -            

                  25) 75  ( 3

                         75

                      -          

                        x x

100 = 75 × 1 + 25

   75 = 25 × 3 + 0

Here we can see that on  diving 75 by 25 the remainder become zero.

Now, we divide 140 by 25,

              25  ) 140    (5

                       125

                      -          

                        1 5) 25 (1

                                15

                             -          

                                10 )  15  (

                                          10

                                     -                

                                           5 ) 10 ( 2

                                                  10

                                               -        

                                              xxx

On dividing 10  with 5 the remainder become zeroes.

Therefore, HCF of 75 , 100 and 140 = 5

Final answer:

Hence, 5 is the required HCF of 75, 100, and 140.

#SPJ2

Answered by John242
0

Given expressions are 75, 100, and 140

To find: We need to find the HCF by using the long division method.

\ \ \ \ \ \ \ 1\\75$$\kern.25em\smash{\raise.3ex\hbox{$\big)$}}$\mkern-8mu        \overline{\enspace\strut#100}$}\begin{document}\ \

       \underline{75}\\25

\ \ \ \ \  \ 3\\25$$\kern.25em\smash{\raise.3ex\hbox{$\big)$}}$\mkern-8mu        \overline{\enspace\strut#75}$}\begin{document}\\

     75\\\overline{\ 0\ }

HCF of 75 and 100 is 25.

       5

25$$\kern.25em\smash{\raise.3ex\hbox{$\big)$}}$\mkern-8mu        \overline{\enspace\strut#140}$}\begin{document}\ \ \ \ \ \Mydiv{125}\end{document}\\    1

     \overline{\ 15\ }$$\kern.25em\smash{\raise.3ex\hbox{$\big)$}}$\mkern-8mu        \overline{\enspace\strut#25}$}\begin{document}\ \ \ \ \ \ \ \Mydiv{15}\end{document}\\    1

            \overline{\ 10\ }$$\kern.25em\smash{\raise.3ex\hbox{$\big)$}}$\mkern-8mu        \overline{\enspace\strut#15}$}\begin{document}\ \ \ \ \ \ \ \Mydiv{10}\end{document}\\   2

                    \overline{\ 5\ }$$\kern.25em\smash{\raise.3ex\hbox{$\big)$}}$\mkern-8mu        \overline{\enspace\strut#10}$}\begin{document}\ \ \ \ \ \ \Mydiv{10}\end{document}\\

                           \overline{\ 0\ }

The HCF of the expressions 75, 100, and 140 is 5.

To learn more about HCF from the given link

https://brainly.in/question/3098913

#SPJ2

Similar questions