find the hcf of 81 and 237. Express the hcf in the form 237 * p + 81 * q. find the value of 3p + q
Answers
Answered by
37
By Euclid's Division Algorithm,
237=81(2)+(75)
81=75(1) + (6)
75=6(12)+(3)
6=3(2)+(0)
Hcf =3
Expressing it in the form of 237x+81y=HCF
3=75-6(12) { From 2nd last step}
3=75-(81-75)(12) {Substituting}
3=75-(81*12-75*12)
3=75-81*12+75*12
3=75(13)-81(12)
3=(237-81*2)(13)-81(12)
3=237(13)-81(38)
3=237(13)+81(-38) {we need an expression in the form 237x + 81y }
Therefore, x =13 , y =- 38
###mark as brilliant answer
rosy62:
thanks
Answered by
12
Answer:
जय श्री राम
यह रहा आपके प्रश्न का संपूर्ण उत्तर
Attachments:
Similar questions