Math, asked by dsyavjsksksmmsmsjsj, 6 months ago

Find the HCF of 96 and 404 by prime factorisation method amd hence find their LCM.​

Answers

Answered by Anonymous
0

\huge\star{\underline{\mathtt{\red{A}\pink{n}\green{s}\blue{w}\purple{e}\orange{r}}}}

\longrightarrow\sf\pink{96=2×2×2×2×2×3={2}^{5}\times{3}^{1}}

\longrightarrow\sf\red{404=2×2×101={2}^{2}\times{101}^{1}}

\Large\sf\underline\green{Therefore,}

\longrightarrow\sf\purple{HCF\:=\:2\:×2\:=\:4}

\Large\sf\underline\orange{Also,}

\longrightarrow\sf\blue{HCF\:×\:LCM\:=\:product\:of\:2\:numbers}

\longrightarrow\sf\orange{4\:×\:LCM\:=\:96\:×\:404}

\longrightarrow\sf\pink{LCM=  \frac{96 \times 404}{4}}

\longrightarrow\sf\red{LCM\:=\:96\:×\:101}

\longrightarrow\large\sf\green{LCM\:=\:9696}

Answered by MissAlison
1

\Large\underline{\underline{\sf{ \color{magenta}{AnsWeR:-} }}}

\sf\pink{96=2×2×2×2×2×3={2}^{5}\times{3}^{1}}

\sf\red{404=2×2×101={2}^{2}\times{101}^{1}}

\Large\sf\underline\green{Therefore,}

\sf\purple{HCF\:=\:2\:×2\:=\:4}

\Large\sf\underline\orange{Also,}

\sf\blue{HCF\:×\:LCM\:=\:product\:of\:2\:numbers}

\sf\orange{4\:×\:LCM\:=\:96\:×\:404}

\sf\pink{LCM= \frac{96 \times 404}{4}}

\sf\red{LCM\:=\:96\:×\:101}

\large\sf\green{LCM\:=\:9696}

Similar questions