find the HCF of 963 and 675 by euclid's division lamma and also express in the form of linear equation.plz explain it step by step.
Answers
Answered by
3
Applying Euclid division lemma :
693=567^1+126- (eq 1)
567=126^4+63-(eq 2)
126=63^2+0-(eq 3)
Since,r=0
Therefore,63 is the H.C.F of 693 and 567
Representing 63 as linear combination of 693 and 567
From Eq 2,
63=567-126^4
63=567-(693-567)^4(from 1, 126=693-567)
63=567-693^4+567^4
63=567^5+693^(-4)
Since,63=567x+693y
where,x=5 and y-4
693=567^1+126- (eq 1)
567=126^4+63-(eq 2)
126=63^2+0-(eq 3)
Since,r=0
Therefore,63 is the H.C.F of 693 and 567
Representing 63 as linear combination of 693 and 567
From Eq 2,
63=567-126^4
63=567-(693-567)^4(from 1, 126=693-567)
63=567-693^4+567^4
63=567^5+693^(-4)
Since,63=567x+693y
where,x=5 and y-4
Anonymous:
Your book is Mbose
Similar questions