Math, asked by yadavsuraj18768, 19 days ago

find the HCF of
a. 18,27
b. 32,72
c. 60,84
d. 44,66
e. 80,112
f. 21,306
g. 28,70
h. 35,105​

Answers

Answered by Anonymous
11

Answer:

Radius of Circle = 100 cm

Length of Arc = 22 cm

\huge{\bf{\underline{\red{To\:Find:}}}}

ToFind:

Degree measure of the angle subtended at the centre of a circle.

\huge{\bf{\underline{\red{Formula\:Used:}}}}

FormulaUsed:

{\bf{\boxed{r=\dfrac{l}{θ}}}}

r=

θ

l

\huge{\bf{\underline{\red{Solution:}}}}

Solution:

Using Formula,

\sf :\implies\:r=\dfrac{l}{θ}:⟹r=

θ

l

Putting Values,

\sf :\implies\:100=\dfrac{22}{θ}:⟹100=

θ

22

\sf :\implies\:θ=\dfrac{22}{100}:⟹θ=

100

22

\sf :\implies\:θ=\dfrac{11}{50}\: radians:⟹θ=

50

11

radians

Now,

\sf :\implies\:θ=(\dfrac{11}{50}\times \dfrac{180}{\pi})°:⟹θ=(

50

11

×

π

180

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{18\times 7}{22})°:⟹θ=(

5

11

×

22

18×7

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{9\times 7}{11})°:⟹θ=(

5

11

×

11

9×7

\sf :\implies\:θ=(\dfrac{693}{55})°:⟹θ=(

55

693

\sf :\implies\:θ=(12\dfrac{33}{55})°:⟹θ=(12

55

33

\sf :\implies\:θ=12°(\dfrac{3}{5}\times 60)':⟹θ=12°(

5

3

×60)

\sf :\implies\:θ=12°36':⟹θ=12°36

Hence, The Degree measure of the angle subtended at the centre of a circle is 12°36'.

━━━━━━━━━━━━━━━━━━

Answered by ak1933
0
G is the correct answer
Similar questions