find the hcf of the following by using Euclid division lemma. 1)50 and 70; 2)96 and 72; 3)300 and 550 ; 4) 1860 and 2015
Answers
Question :-
find the hcf of the following by using Euclid division lemma. 1)50 and 70; 2)96 and 72; 3)300 and 550 ; 4) 1860 and 2015
Answer :-
(i)50 and 70
⇒ 70 = 50 × 1 + 20
⇒ 50 = 20 × 2 + 10
⇒ 20 = 10 × 2 + 0
- HCF (50,70) = 10
(ii)96 and 62
⇒ 96 = 62 × 1 + 34
⇒ 62 = 34 × 1 + 28
⇒ 34 = 28 × 1 + 6
⇒ 28 = 6 × 4 + 4
⇒ 6 = 4 × 1 + 2
⇒ 4 = 2 × 2 + 0
- HCF (96,62) = 2
(iii)300 and 550
⇒ 550 = 300 × 1 + 250
⇒ 300 = 250 × 1 + 50
⇒ 250 = 50 × 5 + 0
- HCF (300,550) = 50
(iv) 1860 and 2015
⇒ 2015 = 1860 × 1 + 155
⇒ 1860 = 155 × 12 + 0
- HCF (1860,2015) = 155
________________________
➤ Extra shots :-
What's the Euclid division lemma is ?
Euclid division lemma :-
• a = bq + r
0 ≤ r < b
> b
_______________________
Answer:
(i)50 and 70
⇒ 70 = 50 × 1 + 20
⇒ 50 = 20 × 2 + 10
⇒ 20 = 10 × 2 + 0
HCF (50,70) = 10
(ii)96 and 62
⇒ 96 = 62 × 1 + 34
⇒ 62 = 34 × 1 + 28
⇒ 34 = 28 × 1 + 6
⇒ 28 = 6 × 4 + 4
⇒ 6 = 4 × 1 + 2
⇒ 4 = 2 × 2 + 0
HCF (96,62) = 2
(iii)300 and 550
⇒ 550 = 300 × 1 + 250
⇒ 300 = 250 × 1 + 50
⇒ 250 = 50 × 5 + 0
HCF (300,550) = 50
(iv) 1860 and 2015
⇒ 2015 = 1860 × 1 + 155
⇒ 1860 = 155 × 12 + 0
HCF (1860,2015) = 155
________________________
Step-by-step explanation:
mark me as brainlist plzz