Find the HCF using Euclid’s Division
Algorithm.(a)196 , 38220
(b) 240 , 6552
Answers
Answer:
you can check plz mark brainliest
★ Answer:-
a) HCF of 196, 38220 is 196
Given Numbers are 196& 38220
To find: HCF
We find HCF using Euclid division algorithm Euclid division algorithm states that given no.will be written in form ofa = bq + r
where q is quotient, b is divisor and ris remainder if r + 0
then q become dividend and r become divisor again we write in form of
a = bq +r this procedure is followed until
r = 0 comes.
then HCF = b
Now,
38220= 196* 195+0
So,
we get r=0
> HCF = 196
b) HCF of 240 and 6552 is 24.
Step-by-step explanation:
Given Numbers are 240 and 6552
To find: HCF
We find HCF using Euclid division
algorithm
Euclid division algorithm states that given
no.
will be written in form of
a = bq + r where q is quotient, b is divisor
and r is remainder
ifr+ 0
then q become dividend and r become
divisor
again we write in form of a = bq +r
this procedure is followed until r = 0
comes.
then HCF = b
So,
6552= 240 x 27 + 72
240 = 72 x 3 + 24
72 = 24 x 3 +0
So, we get r=0