Math, asked by srujand828, 11 months ago

find the height and area of an equilateral triangle whose perimeter is 12 metres

Answers

Answered by lebazir2004
1

Answer:

Height = root 12

Step-by-step explanation:

Area = 2 Root 12

like and Brainliest

Answered by Brâiñlynêha
19

\huge\mathbb{SOLUTION:-}

\sf\underline{\purple{\:\:\:\: Given\:\:\:\:}}

The perimeter of equilateral∆ is 12 m

Now side = 12/3= 4

\sf\bullet Side\:of\: equilateral\:triangle=4cm

Now the Area of equilateral triangle

\boxed{\sf{Area\:of\: equilateral\triangle=\dfrac{\sqrt{3}}{4}a{}^{2}}}

\boxed{\sf{Height\:of\: equilateral\:\triangle=\dfrac{\sqrt{3}}{2}a}}

\sf\underline{\purple{\:\:\:\: Solution\:\:\:\:}}

Now the Area of ∆

\sf\implies Area=\dfrac{\sqrt{3}}{4}\times (4){}^{2}\\ \\ \sf:\implies  Area=\dfrac{\sqrt{3}}{\cancel4}\times \cancel{16}\\ \\ \sf:\implies Area=\sqrt{3}\times 4\\ \\ \sf:\implies Area=4\sqrt{3}cm{}^{2}

Now the height of ∆

\sf:\implies Height=\dfrac{\sqrt{3}}{\cancel2}\times \cancel{4}\\ \\ \sf:\implies Height=\sqrt{3}\times 2\\ \\ \sf:\implies Height=2\sqrt{3}cm

\boxed{\sf{Area\:of\: equilateral\triangle=4\sqrt{3}cm{}^{2}}}

\boxed{\sf{Height\:of\: equilateral\triangle=2\sqrt{3}cm}}

Similar questions