Math, asked by vadivelpillairajavel, 2 months ago

Find the height, if the area of the parallelogram is 36cm2 and the base is 9cm​

Answers

Answered by induu2345
2

Answer:

area = 36 cm2

base = 9cm

area = b×h

36 = 9×h

h = 4cm

Answered by BrainlyRish
4

Given : The area of the parallelogram is 36cm² and the base is 9cm .

Exigency to find : The Height of Parallelogram.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❒ Let's consider the Height of Parallelogram be x cm respectively.

\dag\:\:\cal{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Area_{(Parallelogram)}\:= b \times h }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here b is the Base of parallelogram & h is the Height of Parallelogram & Area of Parallelogram is 36 cm²

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf { 36 = 9 \times h }\\

\qquad \longmapsto \sf { \cancel {\dfrac{36}{9}} =  h }\\

\qquad \longmapsto \cal{\purple {\underline{ h = 4cm }}}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Height \:of\:Parallelogram \:is\:\bf{4\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

V E R I F I C A T I O N :

\dag\:\:\cal{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Area_{(Parallelogram)}\:= b \times h }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here b is the Base of parallelogram & h is the Height of Parallelogram & Area of Parallelogram is 36 cm²

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known\: Values \::}}\\

\qquad \longmapsto \sf { 36 = 9 \times 4}\\

\qquad \longmapsto \cal{\purple {\underline{ 36cm^2 = 36cm^2 }}}\\

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\\\\\

Similar questions