Math, asked by bsmheejwan, 5 months ago

Find the height of a Cuboid whose volume is 275 cm³ and base area is 25 cm².​

Answers

Answered by Anonymous
24

Given:-

  • Volume of a Cuboid is 275 cm³.
  • Base area of a Cuboid is 25 cm².

To find:-

  • Height of a Cuboid.

Solution:-

Here,

  • Base (b) = 25 cm²
  • Volume = 275 cm³

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Volume_{(Cuboid)} = base \times height}}}}}

\tt\longmapsto{275 = 25 \times h}

\tt\longmapsto{h = \dfrac{275}{25}}

\sf\longmapsto{\boxed{\red{h = 11\: cm}}}

Hence,

  • the height of the Cuboid is 11 cm.

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\; Square\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Answered by Anonymous
8

AnswEr -:

  • \underline{\boxed{\star{\sf{\blue{ Height_{(Cuboid)}  \: = \: 11cm }}}}}

Explanation,

Given ,

  • The base of cuboid is 25 cm² .
  • Volume of Cuboid is 275 cm ³

Figure of Cuboid-:

\setlength{\unitlength}{0.74 cm}\begin{picture}\thicklines\put(5.6,5.4){\bf A}\put(11.1,5.4){\bf B}\put(11.2,9){\bf C}\put(5.3,8.6){\bf D}\put(3.3,10.2){\bf E}\put(3.3,7){\bf F}\put(9.25,10.35){\bf H}\put(9.35,7.35){\bf G}\put(3.5,6.1){\sf x\:cm}\put(7.7,6.3){\sf y\:cm}\put(11.3,7.45){\sf z\:cm}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

To Find,

  • The height of Cuboid .

Now ,

  • \underline{\boxed{\star{\sf{\purple{Volume_{Cuboid}\:: Base  \times Height }}}}}

Here ,

  • Base of Cuboid-: 25 cm²
  • Volume of Cuboid-: 275 cm ²

Now,

  • \implies{\sf{\large {275 cm³ = 25 \times Height }}}
  • \implies{\sf{\large {\frac {275}{25} =  Height }}}
  • \implies{\sf{\large { Height \: = \: 11 cm  }}}

Hence,

\underline{\boxed{\star{\sf{\blue{ Height_{(Cuboid)}  \: = \: 11cm }}}}}

___________________________________

Formulas related to Cuboid-:

  • Total Surface area = 2 (Length x Breadth + breadth x height + Length x height)
  • Lateral Surface area = 2 height(length + breadth)
  • Volume of the cuboid = (length × breadth × height)
  • Diagonal of the cuboid =√( length ² + breadth ² + height²)
  • Perimeter of cuboid = 4 (length + breadth + height)

___________________♡___________________

Similar questions