Math, asked by gurjinder29, 11 months ago

find the height of a cylinder when its volume is =1650 cm cube and radius = 5 cm




explain step by step​

Answers

Answered by Brâiñlynêha
5

\huge\mathbb{SOLUTION:-}

\bold{Given:-}\begin{cases}\sf{A\:\: cylinder}\\ \sf{Volume=1650cm{}^{3}}\\ \sf{radius=5cm}\end{cases}

\huge\sf{To\:Find:-}

  • The height of cylinder

\boxed{\sf{Volume\:of\: cylinder=\pi r{}^{2}h}}

\bf\underline{\underline{Step\:By\: step\: Explanation:-}}

\sf\implies Volume=\pi r{}^{2}h\\ \\ \tt\:\:\implies \:\:take\: \pi =\frac{22}{7}\\ \\ \sf\implies 1650=\frac{22}{7}\times (5){}^{2}h\\ \\ \sf\implies 1650=\frac{22}{7}\times 25h\\ \\ \sf\implies  1650\times 7=22\times 25h\\ \\ \sf\implies 11550=550h\\ \\ \sf\implies \cancel{\frac{11550}{550}}=height\\ \\ \sf\implies 21=height\\ \\ \tt\implies \:\:or \: height=21cm

  • The height of cylinder is 21cm

  • Lets verify our answer is correctly or not

  • put the value of h in the formula if L.H.S=R.H.S then our answer is correct

\large\boxed{\mathtt{\pink{VERIFICATION:-}}}

\bold{we\:have:-}\begin{cases}\sf{Volume=1650cm{}^{3}}\\ \sf{radius=5cm}\\ \sf{height=21cm}\end{cases}

\sf Volume\:of\: cylinder=\pi r{}^{2}h\\ \\ \tt\implies 1650=\frac{22}{7}\times (5cm){}^{2}\times 21cm\\ \\ \tt\implies 1650=\frac{22}{\cancel7}\times 25cm\times \cancel{21}cm\\ \\ \tt\implies 1650=22cm\times 25cm\times 3cm\\ \\ \tt\implies 1650= 66cm{}^{2}\times 25cm\\ \\ \tt\implies 1650cm{}^{3}=1650cm{}^{3}

\:\:\: \bf L.H.S=R.H.S\:\:\:\:\:\mathtt{\underline{hence\:\: verified!!}}

\boxed{\sf{\purple{Height\:of\: cylinder=21\:cm}}}

#BAL

#answerwithquality

Similar questions