Math, asked by linesh9242, 10 months ago


Find the height of a Cylinder whose radius is 10cm
and the total surface area is 2420 cm^​

Answers

Answered by deepanjali15
0

Answer:

Total surface area of cylinder =2πr(h+r)

2420=2×22/7×10(h+10)

2420×7=440(h+10)

2420×7/440=h+10

5.5×7=h+10

38.5 -10=h

h=28.5

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:cylinder=28.5\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 10\: cm} \\ \\ : \implies \text{T.S.A\:of\:cylinder=}2420 \: cm^{2} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Height\: of \: cylinder(h) = ? }

• According to given question :

 \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies 2420=2 \times \frac{22}{7} \times 10(h +10) \\ \\ : \implies \frac{16940}{44} =10h+100\\ \\ :\implies 10h=385-100\\\\ :\implies h=\frac{285}{10}\\\\ \green{ : \implies \text{Height\: of \: cylinder} =28.5\: {cm} }\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{Volume\:of\:cylinder}=\pi r^{2}h}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions