Math, asked by shan83, 1 year ago

Find the height of a cylinder with radius of base
3.5 cm and lateral surface area 440 cm

Answers

Answered by Anonymous
5

Answer:

H = 20

Step-by-step explanation:

lateral surface area of cylinder = 2πrh

440 = 2×22/7 ×3.5×h

440= 44×0.5 ×h

440 = 22.0×h

440/22 = h

20 cm = h

Answered by Priyanshulohani
0

\large\underline\pink{Given:-}

Cylinder of Height = 4 cm

Cylinder of Radius = 3.5 cm

\large\underline\pink{To find:-}

Fine the ratio of the TSA and CSA of a cylinder ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \:  \therefore \: \: Total \: \: surface \: \: area \: \: cylinder \: \: = \: \: {2} \: \pi \: r \: {({r} \: + \: {h})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: {({3.5} \: + \: {4})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: \times \: {7.5}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: {22} \: \times \: {0.5} \: \times \: {7.5}

\: \: \: \: \: \leadsto \: \: {44} \: \times \: {3.75}

\: \: \: \: \: \leadsto \: \: {165} \: {cm}^{2}

\: \: \: \: \:  \therefore \: \: Curved \: \: surface \: \: area \: \: of Cylinder \: \: = \: \: {2} \: \pi \: r \: h

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: {22} \: \times \: {0.5} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {44} \:  \times \: {2}

\: \: \: \: \:  \leadsto \: \: {88} \: {cm}^{2}

\: \: \: \: \:  Ratio \: \: = \: \: \frac{TSA \: \: of \: \: Cylinder}{CSA \: \: of \: \: Cylinder}

\: \: \: \: \:  \leadsto \: \: \frac{165}{88}

\: \: \: \: \: \: \: Hence, \\ \: \:\therefore \: \: The \: \: ratio \: \: of \: \: the \: \: TSA \: \: and \: \: CSA \: \: of \: \: a \: \: cylinder \: \: {165} \: : \: {88}

Similar questions