Math, asked by aviking7151, 4 months ago

Find the height of a triangle whose area is 45 sq.cm and the base
is 15 cm.​

Answers

Answered by ns2132500
3

Answer:

Let height be h

Step-by-step explanation:

area = (1/2)×base × h

45 = (1/2) × 15 × h

h= (45×2)/15

= 6

height of the triangle is 6 cm.

Answered by PD626471
34

 \\ \Huge\mathfrak\purple{anSwer:}

\bf{{\underline{Given}}:}

\sf{Area~of~the~triangle=45cm^{2}}

\sf{Base=15cm}

\bf{{\underline{To~find}}:}

\sf{Height~of~the~triangle}

\bf{{\underline{Solution}}:}

\begin{gathered} \sf Area \: of \: a \: triangle = \frac{1}{2} \times base \times height \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf \implies {45cm}^{2} = \frac{1}{2} \times 15 \times height \\ \sf \implies \frac{1}{2} \times 15 \times height = {45cm}^{2} \\ \sf \implies \frac{1}{2} \times height = \frac{45}{15} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf \implies \frac{1}{2} \times height = 3 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf \implies height = 3 \times \frac{2}{1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf \implies height = 3 \times 2 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf \therefore height = \purple{ \underline{ \boxed{ \bf 6cm}}} \: \: \: \: \: \: \: \: \: \: \end{gathered}

\bf\therefore{{\underline{Required~answer}}:}

\sf Height = \purple{ \underline{ \boxed{ \bf 6cm}}}

Similar questions