Math, asked by sabasultanasul15, 3 months ago


Find the height of cone, if its slant height is 34 cm and base diameter is 32 cm.
OR​

Answers

Answered by Anonymous
2

Given that :

Slant height L = 34 cm. and Diameter = 32 cm.

As we know that :

 {l}^{2}  =  {h}^{2}  +  {r}^{2}

where, l = slant height, h = height of the cone and r = radius of the base of the cone

Now,

  =  > {h}^{2}  =  {l}^{2}   -  {r}^{2}  \\  \\  =  >  h =  \sqrt{ {l}^{2} - {r}^{2}   }  \\  \\  =  > h =  \sqrt{ {(34)}^{2} -  { (\frac{32}{2} )}^{2}  }  \\  \\  =  > h =  \sqrt{1156  -  {(16)}^{2} }  \\  \\  =  > h =  \sqrt{1156 - 256}  \\  \\  =  > h =  \sqrt{900}  = 30

So, the height of the cone will be 30 cm. ✔✔

_______________________________

Hope it helps ☺

Fóllòw Më ❤

Answered by sathenaathena
2

Answer:

Circular Cone Formulas in terms of radius r and height h:

Slant height of a cone: s = √(r² + h²)

                                     34=√(32/2)²+h²

                                      34=√(16² +h²)

                             on squaring both sides

                                  1156=16²+h²

                               1156-256=h²

                               h²=900

Step-by-step explanation:

Similar questions