Math, asked by hyejinKO, 12 hours ago

Find the height of cuboid whose base area is 54 cm² and the volume is 216cm³​

Answers

Answered by MAMohamedAli
0

Answer:

4cm

Step-by-step explanation:

Volume = Length × Width × Hight

Volume = Base × Hight

Hight = Volume ÷ Base

         = 216cm³ ÷ 54cm²

         = 4cm

Answered by BrainlySatellite51
3

\; \star \; {\underline{\boxed{\pmb{\orange{\frak{ \; Given\; :- }}}}}}

\\ \\

➺ Volume = 216cm^3

➺ Base Area = 54cm^2

 \star \;{\underline{\boxed{\pmb{\red{\frak{ \; To \; Find \; :- }}}}}}

\\ \\

➺ Height = ?

\; \star \; {\underline{\boxed{\pmb{\purple{\frak{ \; SolutioN \; :- }}}}}}

\\ \\

❒{\underline{\underline{\sf{ \; Calculating \: The \: Height \;  \: : - }}}}

\\ \\

{\underline{\underline{\sf{ \; Formula \; Used \; :- }}}}

{ \underline{ \boxed {\sf{{Volume_{(Cuboid)}=Base Area × Height }}}}}\\ \\

\\ \\

 \sf \longmapsto{Volume_{(cuboid)}=Base \:  Area × Height }\\ \\

 \sf \longmapsto{216=54× Height }\\ \\

 \sf \longmapsto{ \dfrac{216}{54} = Height }\\ \\

 \sf \longmapsto{ \cancel \dfrac{216}{54} = Height }\\ \\

{\; \longrightarrow \; {{ \pink{ \underline{ \boxed{ \frak{Height = 4cm}}}}}} }\;\red\bigstar

\begin{gathered} \\ \\ \end{gathered}

\therefore Height of the cuboid is 3cm.

\begin{gathered}\begin{gathered}\begin{gathered} \\ {\underline{\rule{300pt}{7pt}}} \end{gathered} \end{gathered}\end{gathered}

Similar questions