Math, asked by pratiyushsingh, 1 year ago

find the height of cylinder whose radius is 7 cm and the total surface area is 968 cm square

Answers

Answered by shyam107
12
total s. area of cylinder
Attachments:

pratiyushsingh: thanks bro for your help
shyam107: always bhai.
Answered by SarcasticL0ve
2

Radius of cylinder is 7 cm.

Total surface area of Cylinder is 968 cm². \\ \\

We have to find, height of cylinder.

━━━━━━━━━━━━━━━━━━━━━━━

☯ Let height of cylinder be h cm. \\ \\

We know that,

\star\;{\boxed{\sf{\purple{TSA_{\;(cylinder)} = 2 \pi r(h + r)}}}}\\ \\

\sf Here \begin{cases} & \sf{Radius, r = 7\;cm }  \\ & \sf{TSA = 968\;cm^2}  \end{cases}\\ \\

\setlength{\unitlength}{1 cm} \thicklines \begin{picture}(2,0)\qbezier(0,0)(0,0)(0,2.5)\qbezier(2,0)(2,0)(2,2.5)\qbezier(0,0)(1,1)(2,0)\qbezier(0,0)( 1, - 1)(2,0) \put(2.3,1){\vector(0,1){1.5}}\put(2.3,1){\vector(0, - 1){1.2}}\put(2.3,1){ $\bf h$}\put(0.3,0.1){ $\bf 7\:cm$}\put(0,0){\vector(1,0){1}}\qbezier(0,2.5)(1,1.5)(2,2.5)\qbezier(0,2.5)(1, 3.5)(2,2.5)\end{picture}

☯ Now, Putting values in formula, \\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times 7(h + 7) = 968\\ \\

:\implies\sf 44(h + 7) = 968\\ \\

:\implies\sf h + 7 = \cancel{ \dfrac{968}{44}}\\ \\

:\implies\sf h + 7 = 22\\ \\

:\implies\sf h = 22 - 7\\ \\

:\implies{\boxed{\frak{\pink{15\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\; Height\;of\;cylinder\;is\; \bf{15\;cm}.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\underline{\underline{\bigstar \: \bf\:More\:\:know\:\bigstar}}} \\  \\

  • Curved surface area, CSA of cylinder = \sf 2 \pi rh

  • Volume of cylinder = \sf \pi r^2 h
Similar questions