Physics, asked by Anonymous, 11 months ago

Find the height of equilateral triangle whose side is 15 cm​

Answers

Answered by Anonymous
19

SOLUTION

Given,

Side of an equilateral= 15cm

We know that the area of formula of an equilateral = 3a^2/4

 =  >  \frac{ \sqrt{3}  {a}^{2} }{4}  \\  =  > ( \frac{ \sqrt{3}  \times 15 \times 15}{4} ) \\  =  >  \frac{225 \sqrt{3} }{4}  {cm}^{2}

Now, height of an Equilateral

Using Formula = 1/2× base × height

 =  >  \frac{1}{2}  \times b \times h \\  =  >  \frac{1}{2}  \times 15 \times h =  \frac{225 \sqrt{3} }{4}  {cm}^{2}  \\  =  > 15 \times h =  \frac{225 \sqrt{3} }{4 }  \times 2 \\  =  > 15 \times h =  \frac{225 \sqrt{3} }{2}  \\  =  > h =  \frac{225 \sqrt{3} }{2}  \times  \frac{1}{15}  \\  =  >  \frac{15 \sqrt{3} }{2}  \\  \\   =  > 7.5 \sqrt{3} cm

Hence, the height is 7.53cm

hope it helps ☺️

Answered by Anonymous
2

ANSWER :-

area \:  \: of \:  \: triangle  =   \frac{ \sqrt{3  }  {a}^{2} }{4}  \\  \\ =  \frac{ \sqrt{3} }{4}   \times 15 \times 15 \\  \\  =  \frac{225  \sqrt{3} }{4}  \\  \\ we \:  \: know \:  \: the \:  \: area \: of \:  \: triangle \:  \:  \\  \\  =  \frac{1}{2} \times b \times h \\  \\   \frac{225 \sqrt{3} }{4}   =  \frac{1}{2}  \times 15 \times h \\  \\ h =  \frac{225 \sqrt{3} }{4}  \times 2 \times  \frac{1}{15} \\  \\ h =  \frac{15 \sqrt{3} }{4}   \\  \\  h = 7.5 \sqrt{3}

Similar questions