Physics, asked by Anonymous, 1 year ago

Find the height of equilateral triangle whose side is 15 cm​

Answers

Answered by Anonymous
1

ANSWER :-

area \:  \: of \:  \: triangle  =   \frac{ \sqrt{3  }  {a}^{2} }{4}  \\  \\ =  \frac{ \sqrt{3} }{4}   \times 15 \times 15 \\  \\  =  \frac{225  \sqrt{3} }{4}  \\  \\ we \:  \: know \:  \: the \:  \: area \: of \:  \: triangle \:  \:  \\  \\  =  \frac{1}{2} \times b \times h \\  \\   \frac{225 \sqrt{3} }{4}   =  \frac{1}{2}  \times 15 \times h \\  \\ h =  \frac{225 \sqrt{3} }{4}  \times 2 \times  \frac{1}{15} \\  \\ h =  \frac{15 \sqrt{3} }{4}   \\  \\  h = 7.5 \sqrt{3}

Answered by Vishal101100
0

Ar of Δ = √s(s-a)(s-b)(s-c)

then S= 45/2 = then

√{45/2 (45/2 -15)^3} = √{45/2×(15/2)^3 } = √45/2 × 3375/8 = √9492.18 = 97.43 cm^2

or √3/4 ×15×15 = 225√3/4

then the height will be

using ar of Δ = 1/2 ×b×h = 225√3/4 Or 97.43

we get... h = 450√3/ 4×15 = 7.5 √3 answer....

Similar questions