Math, asked by ajaysah74, 1 year ago

find the height of the cylinder whose radius is 14 M and total surface area is 1932m3

Answers

Answered by CuteRoshan
10
hey mate here ur answer

I hope it's will help you

Mark my answer as Brian list
Attachments:

CuteRoshan: yes i know
CuteRoshan: good morning
CuteRoshan: hlo
CuteRoshan: hmm
Answered by BrainlyConqueror0901
0

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:cylinder=7.95\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 14\: m} \\ \\ : \implies \text{T.S.A\:of\:cylinder=}1932 \: m^{2} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Height\: of \: cylinder(h) = ? }

• According to given question :

 \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies 1932=2 \times \frac{22}{7} \times 14(h +14) \\ \\ : \implies \frac{1932}{44} =2h+28\\ \\ :\implies 2h=43.9-28\\\\ :\implies  h=\frac{15.9}{2}\\\\ \green{ : \implies \text{Height\: of \: cylinder} =7.95\: {m} }\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{Volume\:of\:cylinder}=\pi r^{2}h}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions