Math, asked by Mister360, 4 months ago

Find the height of the cylinder whose volume is 1.54 m3 and diameter of base is 140 cm.

Answers

Answered by mathdude500
15

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{Volume_{(Cylinder)} = 1.54 \:  {m}^{3} } \\ &\sf{Diameter_{(Cylinder)} = 140 \: cm = 1.4 \: m} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{Height_{(Cylinder)}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

We know,

\bf :\longmapsto\: \boxed{ \bf{Volume_{(Cylinder)} = \pi \:  {r}^{2}  \: h}}

where,

  • r = radius of cylinder

  • h = height of cylinder

\large\underline{\bold{Solution-}}

Given that,

  • Volume of cylinder = 1.54 m³

  • Diameter of cylinder = 1.4 m

So,

  • Radius of cylinder, r = 0.7 m

  • Let Height of cylinder be 'h' m.

Using the formula of Volume of cylinder, we have

\rm :\longmapsto\:Volume_{(Cylinder)} \:  =  \: \pi \:  {r}^{2}  \: h

On Substituting the values, we get

\rm :\longmapsto\:1.54 = \dfrac{22}{7}  \times 0.7 \times 0.7 \times h

\rm :\longmapsto\:\dfrac{154}{100}  = \dfrac{22}{7}  \times \dfrac{7}{10}  \times \dfrac{7}{10}  \times h

\rm :\longmapsto\:h \:  =  \: 1 \: m

 \boxed{ \bf{Hence,  \: height  \: of \:  cylinder, \:  h =1 m  \: or  \: 100 cm}}

Additional Information :-

 \boxed{ \bf{ \:CSA_{(Cylinder)} = 2\pi \: rh }}

 \boxed{ \bf{ TSA_{(Cylinder)} = 2\pi \: r(h  + r)}}

where,

  • r = radius of cylinder

  • h = height of cylinder
Answered by abhishek917211
7

Given: Volume of cylinder = 1.54 m and Diameter of cylinder = 140 cm

radius (r) =  \frac{d}{2} =  \frac{140}{2}  = 70cm

volume \:  \: of \:  \: cylinder \:  \:  =  {\pi \: r}^{2} h

 =  > 1.54 =  \frac{22}{7}  \times 0.7 \times 0.7 \times h \\  =  > h =  \frac{1.54 \times 7}{22 \times 0.7 \times 0.7}  \\  \\  =  >  \frac{154 \times 7 \times 10 \times 10 }{22 \times 7 \times 7 \times 100}  = 1m \\  \\

Hence, the height of the cylinder is 1 m.

Similar questions