Math, asked by skdffsgsk124s65s, 4 months ago

Find the height of the cylinder whose volume is 1.54m³ and diameter of the base 140cm.

Answers

Answered by Qᴜɪɴɴ
44

Given:

  1. Volume = 1.54  {m}^{3}
  2. Diameter of base = 140cm

━━━━━━━━━━━━━━━━

Need to find:

  • Height =?

━━━━━━━━━━━━━━━━

Solution:

Diameter = Radius × 2

→ Radius = Diameter ÷ 2

→ Radius = 140 cm ÷ 2

Radius = 70 cm

━━━━━━━━━━━

1 m³ = 1000000m³

→ 1.54 {m}^{3}  = 1540000 cm³

━━━━━━━━━━━

We know,

Volume of a cylinder = \pi {r}^{2} h

→ Volume = \pi  \times {70}^{2}  \times h

→ 1540000 =  \dfrac{22}{7}  \times 70 \times 70 \times h

→ 1540000 = 22 \times 10 \times 70 \times h

→ h =  \dfrac{1540000}{22 \times 700}

\red{\bold{\boxed{\large{h = 100cm}}}}

Height of cylinder is 100cm.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{r}}\put(9,17.5){\sf{h}}\end{picture}

Answered by Anonymous
213

We have :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Volume = 1.54m³
  • Diameter of the base = 140cm
  • Radius = \sf{\dfrac{140}{2}=70cm=0.7m}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To find :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • The height of the cylinder

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Let the height of the cylinder be h.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

∵ Volume of cylinder = πr²h

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\implies{\pi r^2 h=1.54}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\implies{\dfrac{22}{7}×0.7×0.7×h=1.54}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\implies{h=\dfrac{1.54×7}{22×0.7×0.7}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\implies{\underline{\boxed{\pink{\sf{h={\frak{1\:{\sf{m}}}}}}}}}}{\:\star}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

∴ The height of the cylinder is 1m.

Similar questions