Math, asked by arunsaini112002, 3 months ago

Find the Height of the Cylinder whose volume is 462 and radius is 3.2cm ?​

Answers

Answered by Anonymous
3

Conductors are the materials or substances which allow electricity to flow through them. They conduct electricity because they allow electrons to flow easily inside them from atom to atom. Also, conductors allow the transmission of heat or light from one source to another.

Answered by BrainlyRish
4

Diagram :

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{3.2\:cm}}\put(9,17.5){\sf{?}}\end{picture}

Let's Consider Height of Cylinder be h respectively.

\dag\frak{\underline { As,\:We\:know\:that\::}}\\

\star\boxed {\pink{\mathrm{ Volume _{(Cylinder)} = \pi r^2 h \:\:sq.units}}}\\\\

Where ,

  • r is the Radius of Cylinder & h is the Height of Cylinder & \pi = \dfrac{22}{7}

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

 :\implies \sf { 462 = \dfrac{22}{7} \times 3.2^2 \times h }\\\\\\ :\implies \sf { 462 = \dfrac{22}{7} \times 10.24 \times h }\\\\\\ :\implies \sf {\dfrac{ 462\times 7 }{22\times 10.24 }  =  h }\\\\\\:\implies \sf {\dfrac{ \cancel {462}\times 7 }{\cancel {22}\times 10.24 }  =  h }\\\\\\:\implies \sf {\dfrac{ 21 \times 7 }{ 10.24 }  =  h }\\\\\\:\implies \sf {\cancel {\dfrac{ 147 }{0.24 }}  =  h }\\\\\\\underline {\boxed{\pink{ \mathrm {  h = 14.35\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Radius \:of\:Cylinder \:is\:\bf{14.35\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

Formulas Related to Cylinder :

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions