Math, asked by prabhuspsmech8292, 11 months ago

Find the height of the cylinder whose volume is 69.3cmcube and radius of the base is 2.1cm, respectively.

Answers

Answered by as1965286p7d7zu
1

Answer:

Given ,

    Volume of cylinder = 69.3 m^3

       radius r = 2.1 cm = 0.021 m

Step-by-step explanation:

hence ,

      Volume of cylinder = π r^2 h

                                 69.3 =( 22/7 ) * ( 0.021)^2 * h

                                  69.3 x 7 / 22 x 0.021 x 0.021 = h

                                        h = 50,000 m

I HOPE IT HELPS.

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:cylinder=5\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 2.1\: cm} \\ \\ : \implies \text{Volume\:of\:cylinder=69.3 \: cm}^{3}\\ \\ \red{ \underline \bold{To \: Find : }}\\ : \implies \text{Height\: of \: cylinder(h) = ? }

• According to given question :

\bold{As \: we \: know \: that} \\ :\implies \text{Volume\: of \: cylinder} =\pi r^{2}h \\ \\ : \implies 69.3= \frac{22}{7} \times 2.1^{2}\times h \\ \\:\implies69.3\times7= 97.02\times h\\ \\ :\implies h=\frac{\cancel{485.1}}{\cancel{97.02}}\\\\ \green{:\implies\text{Height\: of \: cylinder=5\: cm}}\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{T.S.A\:of\:cylinder}=2\pi r(h+r)}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions