Math, asked by BrainlySmiling, 2 months ago

Find the Height of the Parallelogram if the Area of Parallelogram is 36 cm² and Base is 9 cm​ and Base in 9 cm ?

•Don't Spam !!
•Answer With Full Explanation !!
•Don't Greedy For Points !!​

Answers

Answered by Anonymous
3

Answer:

Also, the area of the parallelogram ABCD is equal to 36 cm2. So, AB×x=36. Hence, the height of the parallelogram ABEF is 8.57 cm.

Best of luck your future

Answered by BrainlyShinestar
89

Given : The Area of Parallelogram is 36 cm² and Base is 9 cm.

To Find : Height of the Parallelogram ?

_____________________

❍ Let's consider the Height of the Parallelogram be h.

\underline{\frak{As ~we~ know~ that~:}}

  • \boxed{\sf\pink{Area_{(Parallelogram)}~=~b~×~h}}

~

Solution : Here b is the Base of Parallelogram in cm & h is the Height of Parallelogram in cm. And we have given with the Area of Parallelogram is 36 cm².

~

\underline{\bf{Now ~By ~Substituting~ the ~Given~ Values~:}}

~

~~~~~~~~~~{\sf:\implies{36~cm^{2}~=~9~×~h}}

~~~~~~~~~~{\sf:\implies{h~=~\dfrac{36}{9}}}

~~~~~~~~~~{\sf:\implies{h~=~\cancel\dfrac{36}{6}}}

~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{h~4~cm}}}}}

~

Hence,

\therefore\underline{\sf{Height~ of ~the ~Parallelogram ~is~\bold{4~cm}}}

~

________________________________________________

V E R I F I C A T I O N :

~

\underline{\frak{As ~we ~know~ that~:}}

  • \boxed{\sf\pink{Area_{(Parallelogram)}~=~b~×~h}}

~

Here b is the Base of Parallelogram in cm & h is the Height of Parallelogram in cm. And we have given with the Area of Parallelogram is 36 cm².

~

\underline{\bf{Now~ By ~Substituting ~the ~Given ~and~ Found~ Values~:}}

~

~~~~~~~~~~{\rm:\implies{36~cm^{2}~=~9~×~4}}

~~~~~~~~~~:\implies\boxed{\rm\pink{36~cm^{2}~=~36~cm^{2}}}

~~~~\qquad\quad\therefore\underline{\textsf{\textbf{Hence Verified!}}}

~

__________________________________________

More Information :

~~~\qquad\quad\underline{\textsf{\textbf\pink{Formula's~of~Areas~:}}}

  • {\rm\leadsto{Square~=~(Side)^2}}

  • {\rm\leadsto{Rectangle~=~Length~×~Breadth}}

  • {\rm\leadsto{Triangle~=~\dfrac{1}{2}~×~Breadth ~×~Height}}

  • {\rm\leadsto{Scalene\triangle~=~\sqrt{s(s~-~a)(s~-~b)(s~-~c)}}}

  • {\rm\leadsto{Rhombus~=~\dfrac{1}{2}~×~d_{1}~×~d_{2}}}

  • {\rm\leadsto{Rhombus~=~\dfrac{1}{2}p\sqrt{4a^{2}~-~p^{2}}}}

  • {\rm\leadsto{Parallelogram~=~ Breadth~×~ Height}}

  • {\rm\leadsto{Trapezium~=~\dfrac{1}{2}(a~+~b)~×~Height}}

  • {\rm\leadsto{Equilateral~Triangle~=~\dfrac{\sqrt{3}}{4}(Side)^2}}
Similar questions