Math, asked by sarikahulle01, 10 months ago

.
Find the height of the right circular cylinder whose volume is 504 cm³
radius is 6 cm.

Answers

Answered by renuagrawal393
12

Answer:

volume of right circular cylinder=

\pi {r}^{2}h = 504 \\  \frac{22}{7} \times 6 \times 6 \times h = 504  \\ h =  \frac{504 \times 7}{22 \times 6 \times 6}  \\  = 4.45cm \\ hope \: it \: helps \: u....

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:cylinder=4.45\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 6\: cm} \\ \\ : \implies \text{Volume\:of\:cylinder=504\: cm}^{3}\\ \\ \red{ \underline \bold{To \: Find : }}\\ : \implies \text{Height\: of \: cylinder(h) = ? }

• According to given question :

\bold{As \: we \: know \: that} \\ :\implies \text{Volume\: of \: cylinder} =\pi r^{2}h \\ \\ : \implies 504= \frac{22}{7} \times 6^{2}\times h \\ \\:\implies504\times7= 792\times h\\ \\ :\implies h=\frac{\cancel{3528}}{\cancel{792}}\\\\ \green{:\implies\text{Height\: of \: cylinder=4.45\: cm}}\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{T.S.A\:of\:cylinder}=2\pi r(h+r)}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions