Math, asked by priyankaA241, 11 months ago

find the height of the solid circular cylinder of total surface area
 {660cm}^{2}
and radius 5 cm .

Answers

Answered by mishka131517
1

Answer:

16cm

Step-by-step explanation:

TSA=2 pi r (h+r)

660=2×22/7 ×5 (h+5)

660=220/7 (h+5)

660×7/220=h+5

4620/220=h+5

21=h+5

21-5=h

h=16cm

Answered by Brâiñlynêha
1

\huge\mathbb{SOLUTION:-}

\bold{given}\begin{cases}\sf{T .S.A \:of\: cylinder=660cm{}^{2}}\\ \sf{radius=5cm}\end{cases}

  • We have to find the height of cylinder

\bf\underline{\underline{According\:to\: Question:-}}

\boxed{\sf{Total\: surface\:area\:of\: cylinder=2\pi r(h+r)}}

  • Now solution

  • put the value in formula which is given in the question

\sf\implies Volume=2\times \frac{22}{7}\times 5(5+h)\\ \\ \tt\implies 660\times 7=2\times 22\times 25+ 5h\\ \\ \tt\implies 4620=44\times 25+5h\\ \\ \tt\implies \cancel{\frac{4620}{44}}=25+5h\\ \\ \tt\implies 105-25=5h\\ \\ \tt\implies 80=5h\\ \\ \tt\implies height=\cancel{\frac{80}{5}}=16cm

  • THE HEIGHT OF CYLINDER IS 16CM

\large\boxed{\sf{\red{VERIFICATION:-}}}

\sf\implies  Total\: surface\:Area=2\pi r(h+r)\\ \\ \sf\implies 660=2\times \frac{22}{7}\times 5(5+16)\\ \\ \sf\implies 660=\frac{44\times 5\times 21}{7}\\ \\ \sf\implies 660=\cancel{\frac{4620}{7}}=660\\ \\ \sf\implies 660=660

\boxed{\sf{Height=16cm}}

#BAL

#answerwithquality

Similar questions