Math, asked by sherynwilliam12, 4 months ago

Find the height of triangle whose area is 45
and base is 15 cm.​

Answers

Answered by MrHyper
82

\Huge\mathfrak\purple{anSwer:}

{}

\bf{{\underline{Given}}:}

  • \sf{Area~of~the~triangle=45cm^{2}}
  • \sf{Base=15cm}

\bf{{\underline{To~find}}:}

  • \sf{Height~of~the~triangle}

\bf{{\underline{Solution}}:}

 \sf Area \: of \: a \: triangle =  \frac{1}{2}  \times base \times height  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies  {45cm}^{2}  =  \frac{1}{2}  \times 15 \times height \\  \sf \implies  \frac{1}{2}  \times 15 \times height  = {45cm}^{2} \\  \sf \implies  \frac{1}{2}  \times height =  \frac{45}{15}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies  \frac{1}{2}  \times height = 3  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies height = 3 \times  \frac{2}{1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \implies height = 3 \times 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \therefore height =  \purple{ \underline{ \boxed{ \bf 6cm}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\bf\therefore{{\underline{Required~answer}}:}

  • \sf Height =  \purple{ \underline{ \boxed{ \bf 6cm}}}
Answered by IISweetWhimsyll
4

Answer :

Given :

  • Area of the triangle = 45cm²
  • Base = 15cm

To find :

  • Height of the triangle

Solution :

 Area of a triangle = 1/2 × base × height

→ 45cm² = 1/2 × 15cm × height

→ 1/2 × 15 × height = 45

→ 1/2 × height = 45/15

→ 1/2 × height = 3

∴ height = 3 × 2 = 6cm

Required answer :

  • Height of the triangle is 6cm

Verification :

 Area of a triangle = 1/2 × base × height

          = 1/2 × 15 × 6

          = 1/2 × 90

          = 90/2

          = 45cm²

  • Hence verified !
Similar questions