find the hight of an equilateral triangle having side 2a
Answers
Answered by
1
Answer:
Given: An equilateral triangle having side=2a.
therefore, AB=BC=AC=2a. Draw AD perpendicular to BC such that BD=DC=a.
Now, from triangle ACD,
(AC)^{2}=(AD)^{2}+(DC)^{2}(AC)
2
=(AD)
2
+(DC)
2
(2a)^{2}=a^{2}+(AD)^{2}(2a)
2
=a
2
+(AD)
2
4a^{2}-a^{2}=(AD)^{2}4a
2
−a
2
=(AD)
2
3a^{2}=(AD)^{2}3a
2
=(AD)
2
AD=\sqrt{3}aAD=
3
a
Therefore, height of an equilateral triangle is AD=\sqrt{3}aAD=
3
a
Similar questions