Math, asked by manikandan1976121, 5 months ago

find the hypotenuse of the right angled triangle whose sides are 40 cm 9 CM​

Answers

Answered by ITzzMrHeaven
24

Step-by-step explanation:

please see the above attachment

Attachments:
Answered by Anonymous
4

Correct Question-:

  • Find the hypotenuse of the right angled triangle whose sides are 40 cm and 9 cm .

AnswEr-:

  • \underline{\boxed{\star{\sf{\purple{Hypotenuse \:of\:Right\:Angled\:Triangle\:is\:41cm}}}}}

Explanation-:

 \frak{Given-:\:}\begin{cases} & \sf{ The\: right\: angled\: triangle\: whose \;sides\: are\: 40 \:cm \:and\:  9 \:cm .} \end{cases}\\\\

 \frak{To\:Find\:-:}\begin{cases} & \sf{ The\: Hypotenuse \:of\:right\: angled\: triangle\:  .} \end{cases}\\\\

By Analysing Attachment -:

  • ABC is a Right Angled Triangle.
  •  \frak{In\:Triangle \:ABC\:-:}\begin{cases} & \sf{ BC = Base  = 9cm  .} & \\\\ \sf{AB\: = \: Perpendicular \:40cm} & \\\\ \sf{ AC \: = Hypotenuse= ??}\end{cases} \\\\

Now ,

  • \underline{\boxed{\star{\sf{\purple{Pythagoras \: Theorem \: =Hypotenuse ² = Base² + Perpendicular²}}}}}

Here ,

  • Hypotenuse = ??
  • Base = 9 cm
  • Perpendicular = 40 cm

Now ,

  • \implies{\sf{\large {Hypotenuse² = 40² + 9² }}}
  • \implies{\sf{\large {Hypotenuse² = 1600 + 9² }}}
  • \implies{\sf{\large {Hypotenuse² = 1600 + 81 }}}
  • \implies{\sf{\large {Hypotenuse² = 1681 }}}
  • \implies{\sf{\large {Hypotenuse = \sqrt{1681}}}}
  • \implies{\sf{\large {Hypotenuse = 41 cm }}}

Therefore,

  • \underline{\boxed{\star{\sf{\purple{Hypotenuse \:of\:Right\:Angled\:Triangle\:is\:41cm}}}}}

____________________♡_______________________

Attachments:
Similar questions