Math, asked by sivakrishnanalluri83, 4 months ago

Find the image of (1.-2) wr.t the straight line 2x – 3y + 5 = 0.​

Answers

Answered by mathdude500
2

Given Question :-

  • Find the image of (1, -2) w.r.t the straight line 2x – 3y + 5 = 0.

Answer

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{a \: point \: (1,-2)} \\ &\sf{a \: line \: 2x - 3y + 5 = 0} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find \:  -  \begin{cases} &\sf{image \: of \: point \: (1,-2) \: in \: 2x - 3y + 5 = 0}  \end{cases}\end{gathered}\end{gathered}

Identities and concept Used :-

Slope of line

Let us consider a line ax + by + c = 0, then slope(m) is

  \bigstar \:  \: \boxed{ \pink{ \rm \: slope \: (m) =  - \dfrac{coefficient \: of \: x}{coefficient \: of \: y}  =  - \dfrac{a}{b} }}

Condition for perpendicular lines

Let us consider a line l having slope m and let other ljne having slope M, then two lines are perpendicular iff

 \bigstar \:  \boxed{ \pink{ \rm \: m \:  \times  \: M \:   =  \:  - 1 \:  \: or  \: \: M \:  =  - \dfrac{1}{m} }}

Equation of line :

Let us consider a line which passes thr ough the point (a, b) and having slope 'm' is given by

 \bigstar  \:  \: \boxed{ \pink{ \rm \: y - b \:  = m(x - a) \: }}

Midpoint Formula :-

Let us consider a line segment joining the points A and B and let C (x, y) be the midpoint of AB, then coordinates of C(x, y) is given by

 \bigstar \:  \: {\underline{\boxed{ \pink{\rm \: (x, y) \:  =  \: {\quad \dfrac{x_1 + x_2}{2} \; or\; \dfrac{y_1 + y_2}{2} \quad}}}}}

 \sf \: where \: coordinates \: are \: A(x_1, \: y_1)  \: \:  and \:   \: B(x_2, \: y_2)

Solution :-

Let AB represents the equation of line 2x - 3y + 5 = 0 and let P represents the coordinate (1, - 2).

Let image of the point P(1, - 2) be Q(a, b).

Now, Let further join Line segment PQ, intersects AB at N.

As we know, distance of object = distance of image

That is, PN = NQ

So, N is the midpoint of PQ

Also, PN is perpendicular to AB.

Step : - 1. Slope of PN

Given

Equation of line AB, 2x - 3y + 5 = 0 ----(i)

 \rm \: Slope \: of \: A B \:  =  - \dfrac{2}{ - 3}  = \dfrac{2}{3}

Since, PN is perpendicular to AB.

 \rm :  \implies \:Slope \: of \: PN \:  =  \:  - \dfrac{3}{2}

Step :- 2 Equation of PN

Now, equation of line passes throu gh P(1, - 2) having slope - 3/2 is given by

 \rm :  \implies \:y - ( - 2) =  - \dfrac{3}{2} (x - 1)

 \rm :  \implies \:2y + 4 =  - 3x  +  3

 \rm :  \implies \:3x + 2y   +  1 = 0 -  - (ii)

Step : 3 To find coordinates of N

Now,

We have

 \rm :  \implies \:2x - 3y + 5 = 0 -  - (i)

and

 \rm :  \implies \:3x + 2y + 1 = 0 -  - (ii)

Now, multiply equation (i) by 2 and equation (ii) by 3 and add, we get

 \rm :  \implies \:4x - 6y + 10 \: + 9x + 6y + 3 = 0

 \rm :  \implies \:13x \:  +  \: 13 \:  =  \: 0

 \rm :  \implies \: \boxed{ \pink{ \rm \:  \: x \:  =  \:  -  \: 1 \: }}

On Substituting x = - 1 in equation (ii) we get

 \rm :  \implies \: - 3 + 2y + 1 = 0

 \rm :  \implies \:2y - 2 = 0

 \rm :  \implies \: \boxed{ \pink{ \rm \: y \:  =  \: 1 \: }}

 \rm :  \implies \:Coordinates  \: of  \: N \:  are  \: (-1, 1)

Step : -4 To find coordinates of Q

Now

We have

  • Coordinates of P (1, - 2)

  • Coordinates of N (- 1, 1)

  • Coordinates of Q (a, b)

Since, N is the midpoint of PQ.

So, by using midpoint Formula,

 \rm :  \implies \:(1,-2) \:  =  \: (\dfrac{a  + 1}{2} , \dfrac{b - 2}{2} )

On comparing we get,

 \rm :  \implies \:\dfrac{a + 1}{2}  =   - 1\:  \: and \:  \: \dfrac{b - 2}{2}  = 1

 \rm :  \implies \:a \:  =  - 3 \:  \: and \:  \: b \:  =  \: 4

Hence,

 \rm :  \implies \:Coordinates  \: of  \: Q \:  are  \: (-3, 4)

Hence,

 \boxed{ \pink{ \rm \: Image \:  of P(1,  - 2) \:w.r.t. \: 2x - 3y + 5 = 0 \:  is \: Q(- 3, 4)}}

Attachments:
Similar questions