find the imaginary part of the analytic function whose real part is x^3 - 3xy^2 +3x^2 - 3y^2
Answers
Answer:
find the imaginary part of the analytic function whose real part is x^3 - 3xy^2 +3x^2 - 3y^2
Answer:
The imaginary part = i(3x²y - y³ + 6xy)
Step-by-step explanation:
The real part, U = x³ - 3xy² + 3x² - 3y²
- Step-1: Ф1(x,y) = du/dx = (x³ - 3xy² + 3x² - 3y²) = 3x² - 3y² + 6x
Ф2(x,y) = du/dy = (x³ - 3xy² + 3x² - 3y²) = - 6xy - 6y
- Step-2: Putting x = z and y = 0 we get,
Ф1(z,0) = 3z² + 6z
Ф2(z,0) = 0
- Step-3: According to Milne Thompson, f'(z) = Ф1(z,0) - iФ2(z,0)
f'(z) = 3z² + 6z
By integrating both sides , f(z) = ∫(3z² + 6z)dz + c
f(z) = z³ + 3z² + c (c=integration constant)
- Step-4: Putting z = x + iy in f(z) we get,
f(x,y) = (x + iy)³ + 3(x + iy)² + c
= (x³ + i3x²y - 3xy² - iy³) + 3(x² - y² + i2xy) +c
= (x³- 3xy² + 3x² - 3y²) + i (3x²y- y³ + 6xy)
- Conclusion: The real part = x³- 3xy² + 3x² - 3y²
The imaginary part = 3x²y- y³ + 6xy