Math, asked by naohheart2892, 19 days ago

Find the incenter of the triangle formed by the straight lines y=√3x,y=-√3x,Andy=3

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ coordinates \: of \: incenter \: of \: ΔABC \\  \\ so \: equations \: of \: sides \: AB, \: BC \: ,AC \\ are \: y =  \sqrt{3} x \: , \: y =  -  \sqrt{3} x \: and \:  \: y = 3 \\ respectively \\  \\ let \: then \\ y =  \sqrt{3} x  \:  \:  \:  \:  \:  \:  \: (1)\\ y =  -  \sqrt{3} x  \:  \:  \:  \:(2)\\ y = 3 \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \  \:  \:  \: (3) \\  \\ solving \: (1) \: and \: (2) \\ we \: get \\ A = (x1, \: y1) = (0, \: 0)  \\  \\ no w\: solving \: (2) \: and \: (3) \\ we \: get \\ B = (x2, \: y2) = ( \sqrt{3}  \:, 3) \\  \\ now \: solving \:  (1) \: and \: (3)\\ we \: have \\ C = (x3,  \: y3) = ( -  \sqrt{3}  \:, 3)

so \: now \: by \: using \: distance \: formula \\ for \: all \: three \: sides \\ we \: obtain \: that \\ \\  AB =  \sqrt{( \sqrt{3} - 0) {}^{2}  + (3 - 0) {}^{2}  }  \\  =  \sqrt{3  + 9}   \\  =  \sqrt{12}  \\  \\ BC =  \sqrt{(3 - 3) {}^{2}  + ( \sqrt{3}  - ( -  \sqrt{3} )) {}^{2} }  \\  =  \sqrt{( \sqrt{3}  +  \sqrt{3} ) {}^{2} }   \\  =  \sqrt{(2 \sqrt{3} ) {}^{2} }  \\  =  \sqrt{12}  \\  \\ AC =  \sqrt{(3 - 0) {}^{2}  + ( -  \sqrt{3} - 0) {}^{2}  }  \\   =  \sqrt{(3) {}^{2}  + ( -  \sqrt{3} ) {}^{2} }  \\  =  \sqrt{9 + 3}  \\  =  \sqrt{12}

thus \: then \: ΔABC \: is \: equilateral \\ in \: nature \\  \\ so \: we \: know \: that \\ for \: an \: equilateral \: triangle \\ incenter \: ,circumcenter \: ,\\  centroid \: ,orthocenter \: ,etc\\  are \: concurrrent \\  \\ thus \: their \: coordinates \:  \\ would \: also \: be \: equal

so \: we \: know \: that \\ coordinates \: of \: centroid \: are \:  \\ calculated \: by \\ x =  \frac{x1 + x2 + x3}{3}  \: , \: y =  \frac{y1 + y2 + y3}{3}  \\  \\  =  \frac{0 +  \sqrt{3}  + ( -  \sqrt{3}  \: )}{3}  \: , \:  =  \frac{3 + 3 + 0}{3}  \\  \\  =  \frac{ \sqrt{3}  -  \sqrt{3} }{3}  \: , \:  =  \frac{2 \times 3}{3}  \\  \\  =  \frac{0}{3}  \: , \:  = 2 \\  \\ (x,y) = (0,2)

Similar questions