Math, asked by pshycojoker593, 7 hours ago

find the incentre of the triangle formed by the points A(7,9),B(3,-7),C(-3,3)​

Answers

Answered by BrainlyConqueror0901
11

\tt\blue{\underline{Answer:}}

\green{\therefore I=  \bigg(\frac{ 7\sqrt{136}   + 3 \sqrt{136}   - 3 \sqrt{272} }{ \sqrt{136 }  +  \sqrt{136} +  \sqrt{262}  }  \:  \: , \:  \: \frac{ 9\sqrt{136}    - 7\sqrt{136}    + 3 \sqrt{272} }{ \sqrt{136 }  +  \sqrt{136} +  \sqrt{272}  } \bigg)}\\

\tt\orange{\underline{Step-by-step\:\:explanation:}}

  \sf  \green{\underline{Given :}}  \\  :   \tt\implies Coordinate  \:  \: a(7,9) \\  \\  :   \tt\implies Coordinate  \:  \: b(3,- 7) \\  \\  :   \tt\implies Coordinate  \:  \: c( - 3,3) \\  \\   \sf  \red{\underline{To \: Find :}} \\  \tt:  \implies Coordinate \: of \: incentre \: of \: triangle = ?

According to given question :

 \tt for \: Incentre \: we \: have \: to \: first \: find \: side \: of \: triangle \\  \\   \sf \orange{Using \: distance \: formula : } \\  \tt :  \implies  ab =  \sqrt{ (x_{2} -  x_{1} )^{2}   +  (y_{2}  - y_{1})^{2}  }  \\  \\ \tt :  \implies  ab = \sqrt{(3 - 7)^{2}  +( -  7 - 9)^{2} }  \\  \\ \tt :  \implies  ab = \sqrt{16 +256}  \\  \\ \tt :  \implies  ab = \sqrt{272}  \: units \\  \\  \sf  \orange{Similarly:} \\  \\ \tt :  \implies  bc = \sqrt{136}  \\  \\ \tt :  \implies  ca = \sqrt{136}  \\  \\  \tt {As \: we \: know \: that} \\ \tt :  \implies  I=   \bigg(\frac{ax_{1} + b x_{2}  + cx_{3} }{a + b + c}  \:  \: , \: \frac{ay_{1} + b y_{2}  + cy_{3} }{a + b + c}  \bigg) \\  \\  \tt :  \implies  I=  \bigg(\frac{ 7\sqrt{136}   + 3 \sqrt{136}   - 3 \sqrt{272} }{ \sqrt{136 }  +  \sqrt{136} +  \sqrt{262}  }  \:  \: ,\:  \: \frac{ 9\sqrt{136}    - 7\sqrt{136}    + 3 \sqrt{272} }{ \sqrt{136 }  +  \sqrt{136} +  \sqrt{272}  } \bigg)

Answered by Anonymous
3

\huge\bold \green{Given:-}

  • coordinate a ( 7 , 9 )
  • coordinate b ( 3 , -7 )
  • coordinate c ( -3 , 3 )

\huge\bold\pink{To \:  Find:-}

  • coordinate of incentre of the triangle.

\huge\bold\red{Solution:-}

PLEASE SEE THE ATTACHED FILE .

Attachments:
Similar questions