Math, asked by satishA39, 1 year ago

Find the incentre of the triangle
whose vertices are (2,4), 6, 4) and
(2.0).​

Answers

Answered by mad210218
0

Given:

A triangle whose vertices are (2,4), (6,4), and (2,0).

To find:

Incentre of the triangle

Solution:

Let A(2,4), B(6,4) and C(2,0)

a=BC=\sqrt{(2-6)^{2}+(0-4)^{2}  } =\sqrt{16+16}=\sqrt{32}\\

a=BC=4\sqrt{2} sq. units

b=CA=\sqrt{(2-2)^{2}+(0-4)^{2}  } =\sqrt{16}\\

b=CA=4 sq. units

c=AB=\sqrt{(6-2)^{2}+(4-4)^{2}  } =\sqrt{16}\\

c=AB=4 sq. units

Incentre of triangle, (x,y)=(\frac{ax_{1}+bx_{2}+cx_{3}   }{a+b+c},\frac{ay_{1}+by_{2}+cy_{3}   }{a+b+c} )  

(x,y)=(\frac{4\sqrt{2}(2)+4(6)+4(2) }{4\sqrt{2}+4+4 },\frac{4\sqrt{2}+4(4)+4(0) }{4\sqrt{2}+4+4 }  )

(x,y)=(\frac{8+2\sqrt{2} }{2+\sqrt{2} }, \frac{4+4\sqrt{2} }{2+\sqrt{2} } )

(x,y)=(6-2\sqrt{2}, 4\sqrt{2}  )

Hence, coordinates of the incentre of the given triangle is (6-2\sqrt{2}, 4\sqrt{2}  ).

Similar questions