Math, asked by priyanshu24792, 5 hours ago

Find the indefinite integral of the function using substitution method. integral sign cot(5x + 9)dx​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm cot(5x + 9) \: dx \:

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{cos(5x + 9)}{sin(5x + 9)} \: dx

To solve this integral, we use method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:sin(5x + 9) = y}

\red{\rm :\longmapsto\:cos(5x + 9) \times 5 \: dx \:  =  \: dy}

\red{\rm :\longmapsto\:cos(5x + 9) dx \:  =  \: \dfrac{1}{5} dy}

So, above integral can be rewritten as

\rm \:  =  \: \dfrac{1}{5}\displaystyle\int\rm  \frac{dy}{y}

\rm \:  =  \: \dfrac{1}{5}logy + c

\rm \:  =  \: \dfrac{1}{5}log\bigg[sin(5x + 9)\bigg] + c

Hence,

\boxed{\tt{ \displaystyle\int\rm cot(5x + 9) \: dx =  \: \dfrac{1}{5}logsin(5x + 9) + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions