Math, asked by Anonymous, 1 day ago

Find the infinite sum:
 \boxed{1 + \frac{2}{\pi} + \frac{3}{ {\pi}^{2} } + \frac{4}{ {\pi}^{3} } + ... + \frac{n}{ {\pi}^{n - 1} } + ... }
Given the condition that  \lim \limits_{n \to \infty} n x^n = 0\, {\tt{when}}\, |x| < 1

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given series, is

\rm \: 1 + \dfrac{2}{\pi} + \dfrac{3}{ {\pi}^{2} } + \dfrac{4}{ {\pi}^{3} } +  -  -  -  -

Let assume that

\rm \: S = 1 + \dfrac{2}{\pi} + \dfrac{3}{ {\pi}^{2} } + \dfrac{4}{ {\pi}^{3} } +  -  -  -  -

Now, its an Arithmetico Geometrico Series, obtained by multiplying corresponding terms of following AP and GP series

\rm \: 1,2,3,4 -  -  -

and

\rm \: 1,\dfrac{1}{\pi} ,\dfrac{2}{\pi} ,\dfrac{3}{\pi} ,\dfrac{4}{\pi} , -  -  -  \\

So,

\rm \: Common\:ratio\:of\:GP, r \:  =  \: \dfrac{1}{\pi}  \\

Now, series is

\rm \: S = 1 + \dfrac{2}{\pi} + \dfrac{3}{ {\pi}^{2} } + \dfrac{4}{ {\pi}^{3} } +  -  -  -  -   \:  \:  \:  \: -  - (1) \\

On multiply both sides by common ratio we get,

\rm \: \dfrac{1}{\pi} S =  \dfrac{1}{\pi} + \dfrac{2}{ {\pi}^{2} } + \dfrac{3}{ {\pi}^{3} } +  -  -  -  -   \:  \:  \:  \: -  - (2) \\

On Subtracting equation (2) from equation (1), we get

\rm \: S - \dfrac{1}{\pi} S = 1 +  \dfrac{1}{\pi} + \dfrac{1}{ {\pi}^{2} } + \dfrac{1}{ {\pi}^{3} } +  -  -  -  -   \:  \:  \:  \: -  - (2) \\

Now, RHS is an infinite GP series with

\rm \: First \: term, \: a \:  =  \: 1 \\

\rm \: Common\:ratio\:, r = \dfrac{1}{\pi}  \\

We know,

Sum of infinite GP series whose first term is a and Common ratio r is

\boxed{\tt{  \: \rm \:  \:  \: S_ \infty  =  \frac{a}{1 - r} \:  \: provided \: that \:  |r| < 1  \:  \: }} \\

So, using this identity, we get

\rm \: S\bigg(1 - \dfrac{1}{\pi} \bigg)  = \dfrac{1}{1 - \dfrac{1}{\pi} }

\rm \: S\bigg( \dfrac{\pi - 1}{\pi} \bigg)  = \dfrac{1}{\dfrac{\pi - 1}{\pi} }

\rm \: S\bigg( \dfrac{\pi - 1}{\pi} \bigg)  = \dfrac{\pi}{\pi - 1}  \\

\rm\implies \:S =  {\bigg(\dfrac{\pi}{\pi - 1} \bigg) }^{2}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions