Math, asked by shweks85, 1 month ago

find the integral 1/x2-a2 with respect to x and hence evaluate integral 1/4x2-9​

Answers

Answered by amansharma264
2

EXPLANATION.

\sf \implies \displaystyle \int \dfrac{1}{x^{2}  - a^{2} } dx

As we know that,

Prove

\sf \implies \displaystyle \int \dfrac{1}{x^{2}  - a^{2} } dx \ = \int \dfrac{1}{(x - a)(x + a)} dx

Multiply and divide by 2a, we get.

\sf \implies \displaystyle \dfrac{1}{2a} \int \bigg(\dfrac{(x + a) - (x - a)}{(x - a)(x + a)} \bigg)dx

\sf \implies \displaystyle \dfrac{1}{2a} \int \bigg(\dfrac{(x + a)}{(x - a)(x + a)}  \ - \dfrac{(x - a)}{(x - a)(x + a)} \bigg) dx

\sf \implies \displaystyle \dfrac{1}{2a} \int \bigg( \dfrac{dx}{(x - a)} \ - \dfrac{dx}{(x + a)} \bigg)

\sf \implies \displaystyle \dfrac{1}{2a} \bigg[ log|x - a| \ - log|x + a| \bigg] + C

\sf \implies \displaystyle \dfrac{1}{2a} log \bigg(\dfrac{x - a}{x + a} \bigg) + C

\sf \implies \displaystyle \int \dfrac{1}{x^{2}  - a^{2} } dx \ = \dfrac{1}{2a} log \bigg( \dfrac{x - a}{x + a} \bigg) + C.

Question.

\sf \implies \displaystyle \int \dfrac{dx}{4x^{2}  - 9}

\sf \implies \displaystyle  \int \dfrac{dx}{(2x)^{2}  - (3)^{2} }

As we know that,

Formula of :

\sf \implies \displaystyle \int \dfrac{1}{x^{2}  - a^{2} } dx \ = \dfrac{1}{2a} log \bigg( \dfrac{x - a}{x + a} \bigg) + C.

\sf \implies \displaystyle \int \dfrac{dx}{(2x - 3)(2x + 3)}

\sf \implies \displaystyle \dfrac{1}{12} \int \dfrac{(2x + 3) - (2x - 3)}{(2x - 3)(2x + 3)} dx

\sf \implies \displaystyle \dfrac{1}{12} \int \dfrac{(2x + 3)}{(2x - 3)(2x + 3)} dx \ - \dfrac{1}{12} \int \frac{(2x - 3)}{(2x - 3)(2x + 3)}dx

\sf \implies \displaystyle \dfrac{1}{12} \int \bigg( \dfrac{dx}{(2x - 3)} \ - \dfrac{dx}{(2x + 3)} \bigg)

\sf \implies \displaystyle \dfrac{1}{12} \bigg[log |2x - 3| \ - log|2x + 3| \bigg]+ C

\sf \implies \displaystyle \dfrac{1}{12} log \bigg| \dfrac{(2x - 3)}{(2x + 3)} \bigg| + C.

\sf \implies \displaystyle \int \dfrac{dx}{4x^{2}  - 9} \ = \dfrac{1}{12} log \bigg| \dfrac{(2x - 3)}{(2x + 3)} \bigg| + C

Similar questions