Math, asked by xxx03, 1 month ago

Find The Integral
Answer with steps
No Spams​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

   \rm \: I =  \int {a}^{x} . {e}^{x}dx  \:  \:  \:  \:  \:  \:  \: ....(i)\\

   \rm \implies \: I =  {a}^{x}  \int {e}^{x}dx -  \int \bigg \{ \frac{d}{dx}( {a}^{x} ). \int {e}^{x} dx \bigg \}dx  \\

   \rm \implies \: I =  {a}^{x} . {e}^{x} -  \int  \{ {a}^{x} . ln(a) . {e}^{x} \}dx  \\

   \rm \implies \: I =  {a}^{x} . {e}^{x} -   ln(a) \int  {a}^{x}. {e}^{x}dx  \\

   \rm \implies \: I =  {a}^{x} . {e}^{x} -   ln(a). I  \:  \:  \:  \:  \:  \: .... [from \:  \: (i)]\\

   \rm \implies \: I  -   ln(a). I=  {a}^{x} . {e}^{x}   \:  \:  \:  \:  \:  \: \\

   \rm \implies \: I  \{1 -   ln(a) \}=  {a}^{x} . {e}^{x}   \:  \:  \:  \:  \:  \: \\

   \rm \implies \: I  =   \frac{{a}^{x} . {e}^{x}}{1 -  ln(a) }   \:  \:  \:  \:  \:  \: \\

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int \rm \: {a}^{x}. {e}^{x} \: dx

We know,

\red{ \boxed{ \sf{ \: {x}^{n}  \times  {y}^{n}  =  {(xy)}^{n}}}}

So, using this, the above integral can be rewritten as

\rm \:  =  \: \displaystyle\int \rm \: {(ae)}^{x} \: dx

We know,

\red{ \boxed{ \sf{ \:\displaystyle\int \rm \: {a}^{x} \: dx \:  =  \:  \frac{ {a}^{x} }{loga} + c}}}

So, using this, we get

\rm \:  =  \: \dfrac{ {(ae)}^{x} }{logae}   \: +  \: c

Hence,

\red{ \boxed{ \sf{ \:\displaystyle\int \rm \: {a}^{x}. {e}^{x} \: dx =  \: \dfrac{ {(ae)}^{x} }{logae}   \: +  \: c \:  \: }}}

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions