Math, asked by gawareaditi1309, 9 months ago

Find the integral of following examples. Only correct answer No Spam. I will mark as BRAINLIST.

Attachments:

Answers

Answered by shadowsabers03
12

12. Given to find,

\displaystyle\longrightarrow I=\int\dfrac{\pi}{\sqrt{\pi-x^2}}\ dx

Taking the constant \pi out of the integral,

\displaystyle\longrightarrow I=\pi\int\dfrac{1}{\sqrt{\pi-x^2}}\ dx\quad\quad\dots(1)

Substitute,

\longrightarrow x=\sqrt\pi\sin\theta

\longrightarrow dx=\sqrt\pi\cos\theta\ d\theta

Then (1) becomes,

\displaystyle\longrightarrow I=\pi\int\dfrac{\sqrt\pi\cos\theta}{\sqrt{\pi-\pi\sin^2\theta}}\ d\theta

\displaystyle\longrightarrow I=\pi\int\dfrac{\cos\theta}{\sqrt{1-\sin^2\theta}}\ d\theta

\displaystyle\longrightarrow I=\pi\int1\ d\theta\quad[\,\because\sin^2\theta+\cos^2\theta=1\,]

\displaystyle\longrightarrow I=\pi\theta+C

\displaystyle\longrightarrow\underline{\underline{I=\pi\sin^{-1}\left(\dfrac{x}{\sqrt\pi}\right)+C}}

13. Given to find,

\displaystyle\longrightarrow I=\int(2\cos x-5\sin x)\ dx

Applying linearity,

\displaystyle\longrightarrow I=\int2\cos x\ dx-\int5\sin x\ dx

Taking constants out of the integral,

\displaystyle\longrightarrow I=2\int\cos x\ dx-5\int\sin x\ dx

\displaystyle\longrightarrow\underline{\underline{I=2\sin x+5\cos x+C}}

14. Given to find,

\displaystyle\longrightarrow I=\int\dfrac{1}{\sqrt{1-\dfrac{x^2}{2}}}\ dx

Or,

\displaystyle\longrightarrow I=\int\dfrac{1}{\sqrt{\dfrac{2-x^2}{2}}}\ dx

\displaystyle\longrightarrow I=\int\dfrac{\sqrt2}{\sqrt{2-x^2}}\ dx

Taking the constant out of the integral,

\displaystyle\longrightarrow I=\sqrt2\int\dfrac{1}{\sqrt{2-x^2}}\ dx\quad\quad\dots(2)

Substitute,

\longrightarrow x=\sqrt2\,\sin\theta

\longrightarrow dx=\sqrt2\,\cos\theta\ d\theta

Then (2) becomes,

\displaystyle\longrightarrow I=\sqrt2\int\dfrac{\sqrt2\,\cos\theta}{\sqrt{2-2\sin^2\theta}}\ d\theta

\displaystyle\longrightarrow I=\sqrt2\int\dfrac{\cos\theta}{\sqrt{1-\sin^2\theta}}\ d\theta

\displaystyle\longrightarrow I=\sqrt2\int1\ d\theta\quad[\,\because\sin^2\theta+\cos^2\theta=1\,]

\displaystyle\longrightarrow I=\theta\sqrt2+C

\displaystyle\longrightarrow\underline{\underline{I=\sqrt2\,\sin^{-1}\left(\dfrac{x}{\sqrt2}\right)+C}}}}

Similar questions