Math, asked by sumaiyansari07, 7 months ago

Find the integral of
sin 3x cos 4x​

Answers

Answered by Anonymous
2

Answer:

here is your answer

Step-by-step explanation:

ANSWER

I=∫sin3xcos4xdx

I=

2

1

∫[sin(3x+4x)+sin(3x−4x)]dx

I=

2

1

∫(sin7x−sinx)dx

I=

2

1

(

7

−cos7x

+cosx)+C

I=

14

−cos7x

+

2

cosx

+C

follow me

thanks my answer

Answered by samruddhipandit
6

Hope it helps u Mark as brainliest if it helps u

Step-by-step explanation:

I=∫sin3xcos4xdx

I= 21 ∫[sin(3x+4x)+sin(3x−4x)]dx

I= 21 ∫(sin7x−sinx)dx

I= 21 ( 7−cos7x +cosx)+C

I= 14−cos7x + 2cosx +C

Similar questions