Math, asked by kiranpiles, 3 months ago

find the integral of : sin^6x/cos^8x ​

Answers

Answered by mathdude500
9

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{\red{\sf\:\displaystyle \int \sf \:  {x}^{n}  = \dfrac{ {x}^{n + 1} }{n + 1} + c}}

\boxed{\red{\sf\:\dfrac{d}{dx} tanx =  {sec}^{2}x}}

Let's solve the problem now!!

\rm :\longmapsto\:Let \: A \:  =  \: \displaystyle \int \sf \: \dfrac{ {sin}^{6}x }{ {cos}^{8}x} dx

 \:  \sf \:  \:  =  \:  \: \displaystyle \int \sf \: \dfrac{ {sin}^{6}x}{ {cos}^{6}x  \: \times  \:  {cos}^{2} x} \: dx

 \:  \sf \:  \:  =  \:  \: \displaystyle \int \sf \:  {tan}^{6}x \:  {sec}^{2}x \: dx

Now, we use the method of Substitution, to solve this integral.

\rm :\longmapsto\:\blue{ \sf \:Put \: tanx = y}

On differentiating w. r. t. x, we get

\rm :\longmapsto\:\blue{ \sf \: {sec}^{2} x \: dx \:  =  \: dy}

On substituting all these values in integral, we get

\rm :\longmapsto\:A \:  =  \: \displaystyle \int \sf \:  {y}^{6}  \: dy

 \:  \sf \:  \:  =  \:  \: \dfrac{ {y}^{6 + 1} }{6 + 1}  + c

 \:  \sf \:  \:  =  \:  \: \dfrac{ {y}^{7} }{7}  + c

 \:  \sf \:  \:  =  \:  \: \dfrac{ {tan}^{7}x}{7}  + c

Additional Information :-

\boxed{\red{\sf\:\displaystyle \int \sf \: cosx \: dx = sinx \:  +  \: c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: sinx \: dx =  -  \: cosx \:  +  \: c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: tanx \: dx =  -  \:log(cosx) \:  +  \: c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: cotx \: dx =   \:log(sinx) \:  +  \: c}}

\boxed{\red{\sf\:\displaystyle \int \sf \:  {sec}^{2}x = tanx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \:  {cosec}^{2}x =  -  \: cotx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: \dfrac{dx}{ {x}^{2}  + 1}  =  {tan}^{ - 1}x + c}}

Similar questions