Math, asked by BAAZ7466, 10 months ago

Find the integral of the function~​

Attachments:

Answers

Answered by Anonymous
17

Answer:

\large \bold\red{\frac{1}{ \sin(a - b) } ( ln | \frac{ \cos(x - a) }{ \cos(x - b) } | )+ C}

Step-by-step explanation:

Given,

\int \frac{1}{ \cos(x - a) \cos(x - b)  } dx

Now,

Multiply and divide by sin(a-b),

We get,

 =  \frac{1}{  \sin(a - b) } \int \frac{ \sin(a - b) }{ \cos(x - a)  \cos(x - b) } dx \\  \\  = \frac{1}{  \sin(a - b) } \int \frac{ \sin(a - b + x - x) }{ \cos(x - a) \cos(x - b)  } dx \\  \\  = \frac{1}{  \sin(a - b) } \int \frac{ \sin((x - b) - (x - a)) }{ \cos(x - a)  \cos(x - b) } dx

Now,

We know that,

  •  \sin( \alpha  -  \beta )  =  \sin( \alpha )  \cos( \beta )  -  \cos( \alpha )  \sin( \beta )

Therefore,

We get,

 = \frac{1}{  \sin(a - b) } \int \frac{ \sin(x - b)  \cos(x - a)  -  \cos(x - b) \sin(x - a)  }{ \cos(x - a)  \cos(x - b) }dx  \\  \\  = \frac{1}{  \sin(a - b) } (\int \frac{ \sin(x - b) }{ \cos(x - b) }  - \int \frac{ \sin(x - a) }{ \cos(x - a) } ) dx\\  \\  = \frac{1}{  \sin(a - b) } (\int \tan(x - b)  - \int\tan(x - a) ) dx\\  \\  = \frac{1}{  \sin(a - b) } ( -  ln | \cos(x - b) |   +  ln | \cos(x - a) | )  + c \\  \\  =   \large \bold{\frac{1}{ \sin(a - b) } ( ln | \frac{ \cos(x - a) }{ \cos(x - b) } |  ) + c}

Answered by Anonymous
7

Answer:

integral of the function

Step-by-step explanation:

thank my answer. hope it helps you.

Attachments:
Similar questions